Solar Photovoltaic System

SOLAR PHOTOVOLTAIC SYSTEM


Solar PV Plant

HOW SOLAR PHOTOVOLTAIC SYSTEM WORKS?


A photovoltaic system, also photovoltaic power system, solar PV system, PV system or casually solar array, is a power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and directly convert sunlight into electricity, a solar inverter to change the electrical current from DC to AC, as well as mounting, cabling and other electrical accessories to set-up a working system. It may also use a solar tracking system to improve the system’s overall performance or include an integrated battery solution, as prices for storage devices are expected to decline. Strictly speaking, a solar array only encompasses the ensemble of solar panels, the visible part of the PV system, and does not include all the other hardware, often summarized as balance of system. Moreover, PV systems convert light directly into electricity and shouldn’t be confused with other solar technologies, such as concentrated solar power and solar thermal, used for both, heating and cooling.


EFFECT OF ENVIRONMENT ON SOLAR PHOTOVOLTAIC SYSTEM PERFORMANCE


Uncertainties in revenue over time relate mostly to the evaluation of the solar resource and to the performance of the system itself. In the best of cases, uncertainties are typically 4% for year-to-year climate variability, 5% for solar resource estimation (in a horizontal plane), 3% for estimation of irradiation in the plane of the array, 3% for power rating of modules, 2% for losses due to dirt and soiling, 1.5% for losses due to snow, and 5% for other sources of error. Identifying and reacting to manageable losses is critical for revenue and O&M efficiency. Monitoring of array performance may be part of contractual agreements between the array owner, the builder, and the utility purchasing the energy produced.Recently, a method to create “synthetic days” using readily available weather data and verification using the Open Solar Outdoors Test Field make it possible to predict photovoltaic systems performance with high degrees of accuracy. This method can be used to then determine loss mechanisms on a local scale – such as those from snow or the effects of surface coatings  on soiling or snow losses.Access to the Internet has allowed a further improvement in energy monitoring and communication. Dedicated systems are available from a number of vendors. For solar PV system that use microinverters , module power data is automatically provided. Some systems allow setting performance alerts that trigger phone or email or text warnings when limits are reached. These solutions provide data for the system owner and the installer. Installers are able to remotely monitor multiple installations, and see at-a-glance the status of their entire installed base.


COMPONENTS OF SOLAR PHOTOVOLTAIC SYSTEM


A photovoltaic system for residential, commercial, or industrial energy supply consists of the solar array and a number of components often summarized as the balance of system (BOS). The term originates from the fact that some BOS-components are balancing the power-generating subsystem of the solar array with the power-using side, the load. BOS-components include power-conditioning equipment and structures for mounting, typically one or more DC to AC power converters, also known as inverters, an energy storage device, a racking system that supports the solar array, electrical wiring and interconnections, and mounting for other components.


SOLAR PHOTOVOLTAIC SYSTEM EFFICIENCY  


A typical “150 watt” solar module is about a square meter in size. Such a module may be expected to produce 0.75 kWh every day, on average, after taking into account the weather and the latitude, for an insolation of 5 sun hours/day. In the last 10 years, the efficiency of average commercial wafer-based crystalline silicon modules increased from about 12% to 16% and CdTe module efficiency increased from 9% to 13% during same period. Module output and life degraded by increased temperature. Allowing ambient air to flow over, and if possible behind, PV modules reduces this problem. Effective module lives are typically 25 years or more. The payback period for an investment in a PV solar installation varies greatly and is typically less useful than a calculation of return on investment. While it is typically calculated to be between 10 and 20 years, the financial payback period can be far shorter with incentives.

Due to the low voltage of an individual solar cell , several cells are wired  in series in the manufacture of a “laminate”. The laminate is assembled into a protective weatherproof enclosure, thus making a photovoltaic module or solar panel. Modules may then be strung together into a photovoltaic array.

In 2012, solar panels available for consumers can have an efficiency of up to about 17%, while commercially available panels can go as far as 27%. It has been recorded that a group from the The Fraunhofer Institute for Solar Energy Systems have created a cell that can reach 44.7% efficiency, which makes scientists’ hopes of reaching the 50% efficiency threshold a lot more feasible.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

©2016 | SolarEnergyForUs.com | Developed By : Wordpress Development Services  

or

Log in with your credentials

Forgot your details?